On Representable Matroids Having Neither U2,5– Nor U3,5–minors

نویسندگان

  • Charles Semple
  • Geoff Whittle
  • GEOFF WHITTLE
چکیده

Consider 3–connected matroids that are neither binary nor ternary and have neither U2,5– nor U3,5–minors: for example, AG(3, 2)′, the matroid obtained by relaxing a circuit-hyperplane of AG(3, 2). The main result of the paper shows that no matroid of this sort is representable over any field. This result makes it possible to extend known characterisations of the binary and ternary matroids representable over a field F to ones of the matroids representable over F that have neither U2,5– nor U3,5–minors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The excluded minors for the class of matroids that are binary or ternary

We show that the excluded minors for the class of matroids that are binary or ternary are U2,5, U3,5, U2,4⊕F7, U2,4⊕F ∗ 7 , U2,4⊕2F7, U2,4 ⊕2 F ∗ 7 , and the unique matroids obtained by relaxing a circuithyperplane in either AG(3, 2) or T12. The proof makes essential use of results obtained by Truemper on the structure of almost-regular matroids.

متن کامل

The Excluded Minors for the Matroids That Are Binary or Ternary

We show that a matroid is binary or ternary if and only if it has no minor isomorphic to U2,5, U3,5, U2,4 ⊕ F7, U2,4 ⊕ F ∗ 7 , U2,4 ⊕2 F7, U2,4 ⊕2 F ∗ 7 , or the unique matroids obtained by relaxing a circuit-hyperplane in either AG(3, 2) or T12. The proof makes essential use of results obtained by Truemper on the structure of almost-regular matroids.

متن کامل

The excluded minors for near-regular matroids

In unpublished work, Geelen proved that a matroid is nearregular if and only if it has no minor isomorphic to U2,5, U3,5, F7, F ∗ 7 , F− 7 , (F − 7 ) ∗, AG(2, 3)\e, (AG(2, 3)\e)∗, ∆T (AG(2, 3)\e), or P8. We provide a proof of this characterization.

متن کامل

On Geelen’s Characterization of the Near-regular Matroids

In unpublished work, Geelen proved that a matroid is nearregular if and only if it has no minor isomorphic to U2,5, U3,5, F7, F ∗ 7 , F− 7 , (F − 7 ) ∗, AG(2, 3)\e, (AG(2, 3)\e)∗, ∆T (AG(2, 3)\e), or P8. We provide a proof of this characterization.

متن کامل

The Excluded Minors for Gf(4)--representable Matroids the Excluded Minors for Gf(4){representable Matroids

There are exactly seven excluded minors for the class of GF(4){representable matroids. Note: The research for this paper was carried out under the PNA1.1-project P&BS of CWI, while J.F. Geelen and A. Kapoor visited the CWI in Amsterdam with nancial support from EIDMA.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995